\(\int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx\) [184]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 103 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=-\frac {(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {(A+B) \text {arctanh}(\sin (e+f x)) \cos (e+f x)}{2 a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

-1/2*(A-B)*cos(f*x+e)/f/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2)+1/2*(A+B)*arctanh(sin(f*x+e))*cos(f*x+e)
/a/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {3051, 2820, 3855} \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\frac {(A+B) \cos (e+f x) \text {arctanh}(\sin (e+f x))}{2 a f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {(A-B) \cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]),x]

[Out]

-1/2*((A - B)*Cos[e + f*x])/(f*(a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]) + ((A + B)*ArcTanh[Sin[e +
 f*x]]*Cos[e + f*x])/(2*a*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2820

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Di
st[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[1/Cos[e + f*x], x], x] /; FreeQ[{a, b
, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3051

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] + Dist[(a*B*(m - n) + A*b*(m + n + 1))/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2
 - b^2, 0] && (LtQ[m, -2^(-1)] || (ILtQ[m + n, 0] &&  !SumSimplerQ[n, 1])) && NeQ[2*m + 1, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {(A+B) \int \frac {1}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{2 a} \\ & = -\frac {(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {((A+B) \cos (e+f x)) \int \sec (e+f x) \, dx}{2 a \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {(A+B) \text {arctanh}(\sin (e+f x)) \cos (e+f x)}{2 a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.21 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.81 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (-A+B-(A+B) \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2+(A+B) \log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2\right )}{2 f (a (1+\sin (e+f x)))^{3/2} \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]),x]

[Out]

((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-A + B - (A + B)*Log[Cos[(e + f*
x)/2] - Sin[(e + f*x)/2]]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2 + (A + B)*Log[Cos[(e + f*x)/2] + Sin[(e + f*
x)/2]]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2))/(2*f*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c - c*Sin[e + f*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(459\) vs. \(2(91)=182\).

Time = 2.68 (sec) , antiderivative size = 460, normalized size of antiderivative = 4.47

method result size
default \(\frac {A \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )+A \sin \left (f x +e \right ) \cos \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-A \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )-A \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )+B \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )+B \sin \left (f x +e \right ) \cos \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-B \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )-B \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )+A \cos \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-A \cos \left (f x +e \right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )+A \left (\cos ^{2}\left (f x +e \right )\right )+A \sin \left (f x +e \right ) \cos \left (f x +e \right )+B \cos \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-B \cos \left (f x +e \right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )-B \left (\cos ^{2}\left (f x +e \right )\right )-B \cos \left (f x +e \right ) \sin \left (f x +e \right )+A \sin \left (f x +e \right )-B \sin \left (f x +e \right )-A +B}{2 a f \left (\cos \left (f x +e \right )+\sin \left (f x +e \right )+1\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}\) \(460\)
parts \(\frac {A \left (\left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )+\cos \left (f x +e \right ) \sin \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-\left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )-\cos \left (f x +e \right ) \sin \left (f x +e \right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )+\cos \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-\ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right ) \cos \left (f x +e \right )+\cos ^{2}\left (f x +e \right )+\cos \left (f x +e \right ) \sin \left (f x +e \right )+\sin \left (f x +e \right )-1\right )}{2 f \left (\cos \left (f x +e \right )+\sin \left (f x +e \right )+1\right ) a \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}+\frac {B \left (\left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )+\cos \left (f x +e \right ) \sin \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-\left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )-\cos \left (f x +e \right ) \sin \left (f x +e \right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )+\cos \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-\ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right ) \cos \left (f x +e \right )-\left (\cos ^{2}\left (f x +e \right )\right )-\cos \left (f x +e \right ) \sin \left (f x +e \right )-\sin \left (f x +e \right )+1\right )}{2 f \left (\cos \left (f x +e \right )+\sin \left (f x +e \right )+1\right ) a \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}\) \(491\)

[In]

int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/a/f*(A*cos(f*x+e)^2*ln(-cot(f*x+e)+csc(f*x+e)+1)+A*sin(f*x+e)*cos(f*x+e)*ln(-cot(f*x+e)+csc(f*x+e)+1)-A*co
s(f*x+e)^2*ln(csc(f*x+e)-cot(f*x+e)-1)-A*ln(csc(f*x+e)-cot(f*x+e)-1)*sin(f*x+e)*cos(f*x+e)+B*cos(f*x+e)^2*ln(-
cot(f*x+e)+csc(f*x+e)+1)+B*sin(f*x+e)*cos(f*x+e)*ln(-cot(f*x+e)+csc(f*x+e)+1)-B*cos(f*x+e)^2*ln(csc(f*x+e)-cot
(f*x+e)-1)-B*ln(csc(f*x+e)-cot(f*x+e)-1)*sin(f*x+e)*cos(f*x+e)+A*cos(f*x+e)*ln(-cot(f*x+e)+csc(f*x+e)+1)-A*cos
(f*x+e)*ln(csc(f*x+e)-cot(f*x+e)-1)+A*cos(f*x+e)^2+A*sin(f*x+e)*cos(f*x+e)+B*cos(f*x+e)*ln(-cot(f*x+e)+csc(f*x
+e)+1)-B*cos(f*x+e)*ln(csc(f*x+e)-cot(f*x+e)-1)-B*cos(f*x+e)^2-B*cos(f*x+e)*sin(f*x+e)+A*sin(f*x+e)-B*sin(f*x+
e)-A+B)/(cos(f*x+e)+sin(f*x+e)+1)/(a*(1+sin(f*x+e)))^(1/2)/(-c*(sin(f*x+e)-1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 329, normalized size of antiderivative = 3.19 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\left [\frac {{\left ({\left (A + B\right )} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + {\left (A + B\right )} \cos \left (f x + e\right )\right )} \sqrt {a c} \log \left (-\frac {a c \cos \left (f x + e\right )^{3} - 2 \, a c \cos \left (f x + e\right ) - 2 \, \sqrt {a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3}}\right ) - 2 \, \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} {\left (A - B\right )}}{4 \, {\left (a^{2} c f \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a^{2} c f \cos \left (f x + e\right )\right )}}, -\frac {{\left ({\left (A + B\right )} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + {\left (A + B\right )} \cos \left (f x + e\right )\right )} \sqrt {-a c} \arctan \left (\frac {\sqrt {-a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{a c \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ) + \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} {\left (A - B\right )}}{2 \, {\left (a^{2} c f \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a^{2} c f \cos \left (f x + e\right )\right )}}\right ] \]

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(((A + B)*cos(f*x + e)*sin(f*x + e) + (A + B)*cos(f*x + e))*sqrt(a*c)*log(-(a*c*cos(f*x + e)^3 - 2*a*c*co
s(f*x + e) - 2*sqrt(a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*sin(f*x + e))/cos(f*x + e)^3) - 2*
sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*(A - B))/(a^2*c*f*cos(f*x + e)*sin(f*x + e) + a^2*c*f*cos(f
*x + e)), -1/2*(((A + B)*cos(f*x + e)*sin(f*x + e) + (A + B)*cos(f*x + e))*sqrt(-a*c)*arctan(sqrt(-a*c)*sqrt(a
*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(a*c*cos(f*x + e)*sin(f*x + e))) + sqrt(a*sin(f*x + e) + a)*sqrt(
-c*sin(f*x + e) + c)*(A - B))/(a^2*c*f*cos(f*x + e)*sin(f*x + e) + a^2*c*f*cos(f*x + e))]

Sympy [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {A + B \sin {\left (e + f x \right )}}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}} \sqrt {- c \left (\sin {\left (e + f x \right )} - 1\right )}}\, dx \]

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(1/2),x)

[Out]

Integral((A + B*sin(e + f*x))/((a*(sin(e + f*x) + 1))**(3/2)*sqrt(-c*(sin(e + f*x) - 1))), x)

Maxima [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\int { \frac {B \sin \left (f x + e\right ) + A}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} \sqrt {-c \sin \left (f x + e\right ) + c}} \,d x } \]

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)/((a*sin(f*x + e) + a)^(3/2)*sqrt(-c*sin(f*x + e) + c)), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 183 vs. \(2 (91) = 182\).

Time = 0.39 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.78 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\frac {\frac {{\left (A + B\right )} \log \left (-512 \, \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 512\right )}{a^{\frac {3}{2}} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {2 \, {\left (A + B\right )} \log \left ({\left | \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right )}{a^{\frac {3}{2}} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {A \sqrt {a} - B \sqrt {a}}{a^{2} \sqrt {c} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{4 \, f} \]

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

1/4*((A + B)*log(-512*cos(-1/4*pi + 1/2*f*x + 1/2*e)^2 + 512)/(a^(3/2)*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2
*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) - 2*(A + B)*log(abs(cos(-1/4*pi + 1/2*f*x + 1/2*e)))/(a^(3/2)*sqrt(c
)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) + (A*sqrt(a) - B*sqrt(a))/(a^2*sqrt
(c)*cos(-1/4*pi + 1/2*f*x + 1/2*e)^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))))
/f

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {A+B\,\sin \left (e+f\,x\right )}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}} \,d x \]

[In]

int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(1/2)),x)

[Out]

int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(1/2)), x)